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Ail possible continuum (hydrodynamic) models in the case of two-dimensional problems of supersonic and hypersonic flows around 
blunt bodies in the two-la;yer model (a viscous shock layer and shock-wave structure) over the whole range of Reynolds numbers, 
Re, ftom low values (free molecular and transitional flow conditions) up to high values (flow conditions with a thin leading shock 
wave, a boundary layer and an external inviscid flow in the shock layer) are obtained from the Navier-Stokes equations using an 
asymptotic analysis. In the case of low Reynolds numbers, the shock layer is considered but the structure of the shock wave is ignored. 
Together with the well-knawn models (a boundary layer, a viscous shock layer, a thin viscous shock layer, parabolized Navier-Stokes 
equations (the single-layer model) for high, moderate and low Re numbers, respectively), a new hydrodynamic model, which follows 
from the Navierstokes equations and reduces to the solution of the simplified (“local”) Stokes equations in a shock layer with vanishing 
inertial and pressure forces and boundary conditions on the unspecified free boundary (the shockwave) is found at Reynolds numbers, 
and a density ratio, k, up to and immediately after the leading shock wave, which tend to zero subject to the condition that (Ic/Re)m 
+ 0. Unlike in all the models which have been mentioned above, the solution of the problem of the flow around a body in this model 
gives the free molecular limit for the coefficients of friction, heat transfer and pressure. In particular, the Newtonian limit for the 
drag is thereby rigorously (obtained from the Navier-Stokes equations. At the same time, the Knudsen number, which is governed 
by the thickness of the sho:k layer, which vanishes in this model, tends to zero, that is, the conditions for a continuum treatment are 
satisfied. The structure of the shock wave can be determined both using continuum as well as kinetic models after obtaining the solution 
in the viscous shock layer for the weak physicochemical processes in the shock wave structure itself. Otherwise, the problem of the 
shock wave structure and the equations of the viscous shock layer must be jointly solved. The equations for all the continuum models 
are written in Dorodnitsyrr-Lees boundary layer variables, which enables one, prior to solving the problem, to obtain an approximate 
estimate of second-order effects in boundary-layer theory as a function of Re and the parameter k and to represent all the aerodynamic 
and thermal characteristics in the form of a single dependence on Re over the whole range of its variation from zero to infinity. 

An efficient numerical method of global iterations, previously developed for solvingviscous shock-layer equations, can be used 
to solve problems of supersonic and hypersonic flows around the windward side of blunt bodies using a single hydrodynamic 
model of a viscous shock layer for all Re numbers, subject to the condition that the limit (k/Re)‘” + 0 is satisfied in the case of 
small Re numbers. An aerodynamic and thermal calculation using different hydrodynamic models, corresponding to different 
ranges of variation Re (different types of flow) can thereby, in fact, be replaced by a single calculation using one model for the 
whole of the trajectory fox the descent (entry) of space vehicles and natural cosmic bodies (meteoroids) into the atmosphere. 
0 1998 Elsevier Science Ltd. All rights reserved. 

The development of aerodynamic and thermal calculations on problems involving supersonic and hypersonic flows 
around blunt bodies in ,a trajectory for re-entry into the atmosphere is of great significance not only for improving 
existing space vehicles but, also, in the design of future, more economical space vehicles which manoeuvre themselves 
using aerodynamic forces (without propulsion) in the upper layers of the atmosphere [l, 21. This is also important 
for predicting aerodynamics of flight, aerodynamic heating, ablation, the glow and the thermochemical and 
thermomechanical destruction of the heat protection of space probes [3], as well as for the quantitative prediction 
of the complex nature of the interaction between meteors and the Earth’s atmosphere and that of planets during 
entry at super-orbital velocities [4]. 

At the present time, such calculations involve solving the corresponding hydrodynamic and kinetic equations, 
which is possible and reliable over a certain range of variation of Re numbers. On the whole, existing models, 
including kinetic models, encompass the whole range of flight Re numbers from low values at high altitudes up to 
high values at low altitudes and describe the whole of the perturbed domain of flow around the body. 

Within the framework of continuum models for the flow around a body (low Knudsen numbers Kn), different 
hydrodynamic models have been used and are still used depending on the range of variation of the Re number and 
the degree of the gas compression in the shock layer (under conditions of hypersonic stabilization the Mach number 
IU, drops out from the system of similarity criteria) [5] and its indirect effect is associated with the occurrence of 
various physicochemical processes in the shock layer. 

The system of Navier-Stokes equations is the most common kinetically and thermodynamically based continuum 
model. The solution of supersonic and hypersonic flow problems using this model is a laborious procedure, 
particularly in the case of long bodies and high Re numbers. The method of matched asymptotic expansions [6] 
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was one of the first approximate approaches to solving the problem of the flow around a body at moderate and 
low Reynolds numbers. It is based on an extension of the Prandtl asymptotic scheme (a boundary layer plus an 
inviscid flow), which holds at high Reynolds numbers, to the domain of moderate and low Reynolds numbers when 
second-order effects in boundary-layer theory, which are of the order of Re-ln, manifest themselves. These effects 
involve additional computations in the Prandtl scheme (first-order boundary-layer theory or the classical Prandtl 
scheme only takes account of terms of the order of unity when Re + -) of the longitudinal and transverse curvatures 
of the body around which the flow occurs, the displacement thickness, the gradients of the entropy and the enthalpy 
in the external boundary, the Navier-Stokes equations and the non-continuum effects of slip and of a temperature 
jump on the body surface [6]. Taking account of these effects using asymptotic expansions of the solutions of the 
Navier-Stokes equations in inverse powers of the square roots of the Re number leads to difficulties in obtaining 
uniformly valid solutions in the case of flows around long bodies in domains with a reduced pressure downstream, 
where a strong vortex interaction between the viscous and inviscid flow domains occurs [7]. As in any asymptotic 
approach, it is difficult to give an a prioti estimate of the accuracy of the resulting solution for the fixed value of 
the parameter Re-ln in terms of which the solution is expanded. 

A second approach is based on solving the viscous shock-layer (VSL) equations, that constitute a composite system 
of equations which follows from the NavierStokes equations and retains all second-order terms of boundary-layer theory 
in the viscous and inviscid flow domains [8-lo]. In this model, the terms O(1) and O(Re-lR) are taken into account 
and only terms O(Re-‘3, which are responsible for molecular transfer of mass, momentum and energy along the body, 
are neglected. The system of VSL equations describes the propagation of perturbations upstream in subsonic flow 
domains and is of the elliptic type there. A numerical method of solution, which is extremely economical in its memory 
requirements and CPU time has been proposed in [ll, 121 for solving the VSL equations. This is based on performing 
global iterations, which enable one to reduce the amount of CPU time required in the case of two-dimensional problems 
by a factor of approximately ten compared with step-by-step in time methods. The VSL model includes classical boundary- 
layer theory at high Reynolds numbers, but is restricted in its use when the Reynolds number tends to zero. 

If, in the VSL equations, the ratio of the densities k up to and immediately after the leading shock wave tends to 
zero, then the pressure gradient normal to the body surface will be solely determined by centrifugal forces, and the 
effects of the longitudinal and transverse curvatures disappear. In this case, a simplified thin viscous shock-layer (TVSL) 
model is obtained which is of parabolic type and can be efficiently solved using the marching methods developed for 
solving the classical boundary-layer equations [3, 13, 141. However, this model, in spite of its extensive use [3,5], has 
a restricted region of application. In the problem of the flow around blunted cones, the TVSL model is only applicable 
in practice in the case of large semi-aperture angles of the wne (a40”). A Newtonian separation with a zero pressure 
on the body occurs at smaller semi-aperture angles. Furthermore, specification of the shape of the shock wave equidistant 
from the body (in accordance with the asymptotic requirement of this model) leads, in the case of the flow around 
spherically blunted cones, to a “non-physical” discontinuity in the curvature of the shock wave and, as a consequence, 
to a discontinuity in the component of the pressure gradient tangential to the body [lo, 151. As a rule, at Re numbers 
corresponding to the appearance of a spread leading shock wave the full or simplified Navier-Stokes equations (see 
Section 8) with slip conditions and a temperature jump on the body are used [16]. This enables one to determine the 
heat fluxes and the friction force correctly up to Reynolds numbers Re, = p,V&@_ = 100 [17]. The solutions of 
the VSL equations and of the simplified and full Navier-Stokes equations when Re + 0 give infinite viscous friction 
and heat transfer coefficients. Kinetic equations are therefore used at the present time to determine the above coefficients 
and, in general, to determine the whole of the flow field when Re + 0 or the Monte-Carlo method is used [18,19]. 

In this paper, the model of a continuum medium is extended to problems of hypersonic flow around blunt bodies 
at Reynolds numbers Re = p,V&/u(Ts) + 0 (To is the temperature of the adiabatically stagnant free stream). 
Ah of the above-mentioned models are obtained from the Navier-Stokes equations when Re -+ -. It is found 
that, in problems involving the hypersonic flow of a viscous gas around a body when k -_j 0 and Re + 0, but subject 
to the condition that (k/Re)” + 0, the Navier-Stokes equations degenerate into simplified. Stokes equations which 
only contain second derivatives with respect to the coordinate normal to the body (“local” Stokes equations) with 
the usual no-slip conditions on the body and generalized Rankine-Hugoniot conditions on the side of the spread 
shock wave facing the body. The solution of this problem is written out in quadratures (Section 9) and gives the 
free-molecule limit for the pressure, drag and heat transfer coefficients. In this case, the ratio of the mean free 
path to the shock-layer thickness (the local Knudsen number, Kn) tends to zero. 

This limiting value has a definite physical meaning and leads to local force and thermal laws for the interaction 
between a rarefied gas and the surface it flows about. In particular, Newton’s formula for the pressure on a body is 
obtained in the above-mentioned limit. The boundary of the shock layer approaches the body in accordance with 
the law (k/Re)ln -+ 0, and the whole of the domain of the perturbed flow around the body will therefore mainly be 
determined by the structure of the spread shock wave, which thickens as Re + 0. This structure can be determined 
after the flow in the shock layer has been found. The latter is found regardless of the shock-wave structure. This 
model of a vanishingly thin viscous shock layer (VTVSL) as well as the boundary-layer equations includes as a special 
case in the viscous shock-layer equations and provide the free-molecule limit under the above-mentioned conditions. 

The viscous shock-layer (VSL), thin viscous shock-layer (TVSL) and vanishingly thin shock layer (VTVSL) models 
are based on boundary-layer equations as the basic model which contain all terms of the order of unity when Re 
+ 00. The VSL equations and all the simpler models which follow from them are therefore naturally written in 
the same Dorodnitsyn-Lees boundary-layer variables over the whole range of Reynolds numbers from zero to 
infinity, which encompasses all conditions for the flow around a body over the whole of the trajectory for its entry 
into the Earth’s atmosphere (or into the atmosphere of a planet). These equations can be naturally solved using 
the same algorithm with simple “switching” (allowing k to approach zero) on approaching low Re numbers. 
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1. THE NAVIER-STOKES EQUATIONS IN A SYSTEM OF 
COORDINATES ATTACHED TO THE SURFACE OF THE BODY 

AROUND WHICH THE FLOW OCCURS 

Assuming that the contour of a plane or an axially symmetric blunt body is sufficiently smooth, we 
shall consider the translationally steady-state flow of a gas around it with a velocity V, which is directed 
along the body axis lin an orthogonal curvilinear system of coordinates attached to the body surface. In 
this system of coordinates, the position of a point P in the flow is determined by its distance y = PN 
along the normal to the contour, measured from the body surface, and by the length of the arcx = ON 
along the contour, rneasured from its vertex 0 to the base of the normal N (Fig. 1). 

We introduce the following notation: p,, V, are the density and the velocity of the free stream and 
p-p, p,V$ are the density and the pressure, respectively. Then, in the chosen system of coordinates, 
the Navier-Stokes equations for a homogeneous, viscous and heat-conducting gas will be [20] 

a 
- ax ( t”PwPUI ) + ay -q fb”P,PUz) = 0 

P-P 

P v2aP =-~~++[$(rvqj+$(H,rv~~)]+~-$%w 

POOP u1 au2 
H,x+” 

(1.1) 

(1.2) 

(1.3) 

p = pR,T I V,’ 0.5) 

In this system, Eq. (1.1) is the equation of continuity, (1.2) and (1.3) are the momentum equations 
in a srojecp onto the x and y axes, (1.4) is the energy equation in terms of the total enthalpy H = h 
+ (u 1 + u2)/2, and (1.5) is the equation of state which, for simplicity, is taken in the form for a perfect 
gas. By virtue of the symmetry of the problem 

Fig. 1. 



878 G. A. Tirskii 

Here x, y and cp are orthogonal curvilinear coordinates, vl, u2, u3 are the physical components of the 
velocity vector of the gas in the orthonormalized basis of this system of coordinates, rii (i, i = x, y, cp) 
are the components of the viscous stress tensor, H1 = 1 + x(x)y = 1 + R-‘(x)y, H2 = 1, H3 = r” = [r,,,(x) 
+ y cos a(_~)]’ are Lame coefficients, x(x), R(x) are the curvature and the radius of curvature of the 
contour of the body, h is the thermodynamic enthalpy, RA is the specific absolute gas constant, RAm is 
the absolute gas constant, m is the molecular mass of the gas, T is the temperature, v = 0 for plane 
flow and v = 1 for axially symmetric flows, r,,,(x) is the distance from a point on the contour around 
which the flow occurs to the axis of symmetry, r(x, y) is the distance from a point in the flow to the axis 
of symmetry and o(x) is the angle between the tangent to the contour of the body around which the 
flow occurs and the axis of symmetry of the body (Fig. 1). In the case of a convex body, the functions 
o(x), r,,(x), R(x) and r(x, Y) are connected by the obvious geometric relations 

xl2 
I,(X) =; sin<r(t)dt = J R(t)sinr df 

0 a(x) 

5% = A- = X(X) k = H sina !fL = cosa(x) 
65 R(x) ‘ax ’ ’ ay 

(1.7) 

Certain relations between the components of the viscous stress tensor 2^ and the components of the 
strain rate tensor e^, as well as an expression for the vector of the total energy flux density J are required 
to close the system of equations (l.l)-(1.5). We have [20] 

i=(pC,-2p/3)Vv&+2@ (1.8) 

Here, p, p< are the dynamic and bulk coefficients of viscosity and 6 is a metric tensor. The energy flu 
density vector can be expressed as follows: 

J=-%~T++_: vH+p.“)-vq ) 1 (l-9) 

?.“Z ( ‘5,u1+2*yu2 el+ ‘5xyu1+2uu2 e2, 1 ( 1 u2 =lJf +v,z 
where cr is the Prandtl number, h is the thermal conductivity, cp is the specific heat at constant pressure 
and el and q are the unit vectors along the x and y axes. When the dependences of the coefficients p, 
&, h and c on temperature are specified, the system of Navier-Stokes equations (1.1)-(U) is a closed 
system of f&e equations for determining the five functions: ul, u2, p, p, H (or 7). Here, no account has 
been taken of the physicochemical processes which occur in the flow and accompany problems of 
hypersonic flow around 
conclusions concerning 
quantitative results. 

a body [l, 91. Taking account of these processes will not-change the basic 
the setting up of hydrodynamic models but it will, of course, change the 

2. BOUNDARY CONDITIONS 

For simplicity, we shall write out the boundary conditions on the body subject to the condition that 
the body is not thermochemically destroyed. Then, using the laws of conservation of mass and energy 
and the no-slip condition on the wall, we obtain 

y(x, 0) = 0, iJz(x, 0) = 0 (2.1) -~ 
P &f --%(x.0) = ~osTJ(x.0) or T(x, 0) = T,(X) (2.2) 

Here, E is the blackness of the body surface, as is the Stefan-Boltzmann constant and T,,,(x) is the 
required temperature (the first condition of (2.2)) or the specified temperature (the second condition 
of (2.2)) of the body surface. The energy balance condition (2.2) is written assuming that the heat flux 
inside the body is negligibly small compared with the heat emission from the surface. 
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In the case of supersonic flow around a body, the velocity vector and the functions p,p and H (or 
T), consistent with the equation of state (1.5) 

YLG Y,(X)1 = 409 Yb. Y,(x)1 = yc.3, Ph Y,(X)1 = 1 (2.3) 

P~~Y,W~=WY~~). Hb,~,(x)l=K.,v Y=c,/c, 

must be specified in the free stream at infinity. Here, y, = y$(x) is a conditional known boundary, located 
quite far ahead of the body on which the free stream parameters are specified and y is the adiabatic 
exponent. 

In the case of supersonic flow around a body at fairly high Reynolds numbers, when the thickness 
and structure of the leading shock wave can be neglected [21], it is convenient to replace the boundary 
conditions in the free stream by the corresponding conditions on the required shock wave. When Re 
+ 00, these will be the usual Rankine-Hugoniot conditions at a strong discontinuity which, when the 
parameters are specified in the free stream, will give a one-parameter family of solutions for p, p, ~1, 
vu2 and H (or 7) immediately outside the shock wave. This family of solutions depends on the angle of 
inclination of the shock wave p(x). This angle and the standoff distance of the shock wavey = y$(x) are 
connected by the obvious geometrical relation (Fig. 1) 

dy,ldx = HI, tg P,t H,, = 1 + y,WR(x), p,(x) = P - a 

where ps(x) is the angle of inclination of the shock wave to the x axis. 

(2.4) 

Equation (2.4) relates the two unknown quantities: B(x) andy = y,(x) and, therefore, a single condition 
will not suffice when formulating the problem of supersonic flow around a body within the framework 
of the complete NavierStokes equations (1.1X1.5), which are of the seventh order with respect to 
the coordinate y, with four boundary conditions in the required shock wave and three conditions on 
the body (2.2). 

In the literature, <an additional condition (llp/ily)(x, 0) = 0 on the wall, which does not follow from 
the mechanical formulation of the problem, is often imposed or this formulation of the problem is closed 
at a difference level, which is done differently by different authors [lo] and non-uniqueness of the solution 
is thereby produced. There is an alternative way of avoiding this artificial non-uniqueness: either to 
solve the problem without separating out the shock wave (it must be obtained when solving the problem), 
which is extremely difficult at high Reynolds numbers [22], or to reduce the order of the system of 
Navier-Stokes equations by one and formulate the boundary conditions on the required shock wave. 
The latter procedure is automatically implemented asymptotically in the two-layer model (the shock 
layer proper and the shock-wave structure) for the problem of flow around a body at both high and 
moderate Reynolds numbers [13, 141. It is important to note that, in this case, just the out-of-order- 
of-magnitude terms, which are proportional to Re-’ , drop out of the Navier-Stokes equations. In order 
to take account of th’e conditions accompanying flow around a body at moderate Reynolds numbers, the 
conditions on the shock wave are written in the form of generalized Rankine-Hugoniot conditions, which 
take account of the viscosity and the heat conduction of the gas immediately behind the shock wave. 

Dynamic compatibility conditions, which relate the characteristics of the gas motion up to and 
immediately after the shock wave while taking account of viscosity and heat conduction have been derived 
by Duhem and have been considered in detail by Kochin [23]. They have also been applied [24-271 to 
problems involving supersonic flow around a body. The compatibility conditions from the laws of 
conservation mass, momentum and energy, which are applied to a volume of fluid containing a 
discontinuity, neglecting the tangential components of the mass, momentum and energy flows within 
the structure of the shock wave as well as its thickness. In the case of the steady-state problem, when 
all the parameters are specified in the free stream, these conditions are 

pmvn_ = p&u,,, v,, = -V, sin p (2.5) 

po&ovEa+pmn=p pu v -pm =snsx (2.6) 

PAJJL = p~p,v,,JC + (J. n), (2.7) 

Quantities with the infinity subscript refer to conditions in the free stream while those with the subscript 
s refer to conditions on the required contour y, = y&), n is the unit vector normal to the curve y, = 
yS(x), directed towards the free stream and p,, is the stress vector in a small area with normal n. 
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Together with (1.5), relations (2.5)-(2.7) in two-dimensional problems provide five equations for 
determining the five quantities: uu, uzo pS, ps, H, (or T,), which depend on the angle of inclination of 
the shock wave p, = /3 - a. The components of the velocity vector on the side of the shock-wave structure 
facing the body can be found from condition (2.5) and the vector condition (2.6) taken in a projection 
onto the tangent to the curvey, = yS(x) 

v 2s =ui - sin P, 
p_V, sin p rnW 

sin j3 
=~IstgPs-w.a- 

cos BS 

where 
ui = V, COS’ p,[(l+ k tg2 &)cosa-(l- k) tgPS sin al 

sin j3 
~~=-V,cos~~,[(k+tg~~,)sina-(l-k)tg~,sinal=u~tg~,-kV,- 

cos P.7 

2”,=cos2Ps[~~(l-tg2Ps)f(~~~--~)tgP,l, 

(2.8) 

(2.9) 

(2.10) 

Here, ui, ui are the components of the velocity vector along the x and y axes for the shock wa,ve in an 
ideal gas (when there is no viscosity), r,, = pnu is the projection of the viscous stress vector z en onto 
the tangent to the contoury, = y&x) and k = p.JpmpS = pi’ is the ratio of the density in the free stream 
to the density beyond the jump (on the required contour yS = y&r)). 

From the remaining equations (2.6) and (2.7) and the equation of state (1.5), we obtain the remaining 
quantities on the unknown contour 

1 r 
Ps = -+(I-k)sin2p+z 

rMZ Pox,’ 

H,=H,+ 
p_V~sinfi(J*n)S 

(2.11) 

1 -E 
P, 

where 

T nm = cos2 P, eyy + T’xr tg2 p, - 22, tg p, >, 

T, =$ 
(2.12) 

(J.n), =cosPs(JHy -J, tgp,),, 
P 

To is the temperature of the adiabatically stagnant free stream (minus the temperature of the free 
stream). 

Relations (2.8) (2.9) and (2.11) become the Rankine-Hugoniot relations on a shock wave of zero 
thickness if the viscosity and thermal conductivity of the gas are neglected, that is, when Re + 00. In 
this case, for a specified angle p, = p,(x), the five relations (2.8), (2.9) and (2.11) are sufficient to 
determine the five parameters for the shock wave. When the gas has viscosity and thermal conductivity, 
this cannot be done prior to solving the problem. 

Conditions (2.8), (2.9) and (2.11) are boundary conditions, which are sometimes called slip conditions 
on account of the discrepancy between the tangential component of the velocity and the total enthalpy 
across the shock wave and the corresponding parameters in an inviscid gas due to the effects of viscosity 
and thermal conductivity. The velocity component which is tangential to the shock wave (uU # u,) 
and the total enthalpy (H, # H,), which remain continuous across the jump in an ideal gas, suffer a 
discontinuity. 
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After solving the problem, it is usually necessary to find the pressure coefficient 

the friction coefficient 

the convective heal: transfer coefficient 

(2.13) 

(2.14) 

(2.15) 

and the total drag coefficient of the plane contour (v = 0) (per unit length of the wing span perpendicular 
to the free stream velocity) or of the body of revolution (v = 1) with an arc length x 

c,=- 2& 
p.J,zx”$+‘(X) = p,v,2r;+i 0 4 i[ 2,cosa+(p,V,Zp,-p,-z,)sina. r,Vdx= 1 W 

4 x =-- 
I( I p_v_2$+’ 0 [ 

j.L% cosa+(p,V2p, -p,)sina 1 r,Vak = 
W W 

=%i (c, 
rw 0 

cos a + Cp sin a r,Va!x 1 (2.16) 

where F, is the total axial force acting on the windward part of the body with a length of the 
contour x. 

3. THE NAVIER-STOKES EQUATIONS AND BOUNDARY CONDITIONS 
IN DORODNITSYN-LEES VARIABLES 

In the analytic and numerical solution of problems in aerodynamics and heat exchange it is important 
that both the independent and the dependent variables are chosen in a rational manner. In boundary- 
layer theory, the use of Dorodnitsyn variables [28] in the Lees form [29] leads to a weaker dependence 
of the required functions on the coefficients of the equations than when the initial (physical) variables 
are used, a weak dependence (in the case of laminar flows) of the boundary-layer thickness on the 
longitudinal coordinate and possibilities for obtaining self-similar and quasi-self-similar solutions under 
certain conditions. Furthermore, it has been shown that, in Dorodnitsyn variables within the framework 
of the thin inviscid shock layer model, the shock-layer thickness, the velocity protiles and the longitudinal 
pressure gradient in the neighbourhood of the critical point are independent of the density profiles along 
the axis, the variability of which may be caused by the compressibility or other physicochemical processes 
in the shock layer [30]. In the above-mentioned variables a weak dependence of the standoff distance 
of the leading shock wave on certain parameters of the problem is established and, also, similarity laws 
[311. 

Since all second-order effects in boundary-layer theory are corrections to the results for a classical 
boundary layer and are contained in the composite system of viscous shock-layer (VSL) equations 
(Section 6), which differs from the complete system of Navier-Stokes equations in the small terms 0 
(Re-’ - Kn), it is natural to write the initial system of NavierStokes equations (l.l)-(1.5) and the 
simplified models which follow from this system in Dorodnitsyn-Lees variables. The idea is therefore 
developed in this paper that, if Dorodnitsyn-Lees variables are effective when solving problems in 
boundary-layer theory, they will also be effective when the solutions of problems of supersonic flow 
around a body are represented using more complex gas dynamic models and, in particular, the VSL 
model which also includes the complete NavierStokes equations. 
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So, we transform the Navier-Stokes equations (1.1)-(M) and the boundary conditions on the body 
and on the shock wave to the new independent variables 

(3.1) 

Here, t(x) and A(x) are, at present, arbitrary functions which are subsequently selected from 
considerations of the ease of writing down the equations and normalizing the physical thickness of the 
boundary layer or of the shock layer and, also, to make it easier to obtain estimates and numerical 
solutions. The inverse transform of (3.1) will be 

x=x(&, F”+’ =l+(v+l)A (34 

Using Eq. (1.1) we now determine the stream function (2rr)“\y(x,y) from the system of equations 

a~lax=-H,t-“p,pv2, a~lay=rVp_pv, (3.3) 

and we shall seek v(x, y) in the new variables in the form 

V(-GY) = b(x)f(bl), b(x) = p_u&A (3.4) 

The function f(<, n) is called the reduced stream function and U* is the characteristic velocity which is 
chosen in each model in its own way. If a further characteristic velocity U* is introduced and one defines 
the dimensionless projections of the velocity 

u = u,lu,, v = y/v* (3.5) 

then Eqs (3.3) become 

u = aflaT, P(~U + k2d = -uhf+ xmafla5) (3.6) 

The coefficients kl, k2, PO are given by expressions (3.13) which are presented below. 
We now introduce the dimensionless components of the viscous stress tensor z&, 11) (i, i = 

Fo,P,and the dlmenstonless projecttons of the energy flux vector X(5, IJ) and Y(& TI) using the 

r,(x*Y)=Nz <5*11>* 
xH, 55 

(3.7) 

Re* = P-U* 
/.~pxH, F2” 

(3.8) 

Then, when account is taken of Eqs (3.6), the remaining equations (1.2)-(1.4) in the variables (3.1) 
can be written in the form 
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Here 

zss = 2(&u + ky + Du) + (< - g)V’.v 

‘5,,,, = 2ok, S+(<-$$)V..v 

2& =2v(n,u+ky)+(~-K)V’*v 

TV,., =$-&u+k&&v +Dv) 

(3.10) 

(3.11) 

(3.12) 

, 
%I = m2Te,, + Re’ A2D(&rtq) 

V‘.v=$,v+ky +v(n,u+k+)+Du+pkZav 131~ 

X=DH-D(v;+v ;)/2 + au? ( ufg + pkp TV,,) 

X’=+X+)D(fl) 

A number of dimensionless coefficients appear in the system of equations (3.6), (3.9)-(3.11) which 
are expressed both i:n terms of specified quantities and quantities which are unknown until the problem 
has been solved u*, ‘II*, R, r,,,, a, p, A, y 

PO 
dlnb 

PI 
dlnu. dlnv, 

=dlnx =dlnx* 82=- dlnx 
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m, = p, +xxH,sina+--- 
y dlnR 1 

r RH, dlnx 
dlnA v y dlnR 

m, =2j3, +dlnx+rxsina+--- 
1 

w RH, dlnx 

4 =m, -PI, n, = 
xH, sin a 

Gv 

(3.13) 

k4 
Rv. =-, k,= u.v.A A 

XU* xH,F”V,2 ’ 
k, =- 

pH,T”R 

k, = 
xH,v . cos a , ks = ‘*’ 

r-u* pu,xH,F” 

E, = 
P 

pmpu.xH, ’ 
&2 

wina, = pP” 

pdu*r 
Eg =- 

pav.A 

&4 = 
P pcosa 

P~PJ .RH, 
, &s=V- 

p-pv ??r 

We now eliminate the derivative ap/ilq from Eq. (3.9) using Eq. (3.10) and, simultaneously, the term 
k+~) using the second equation of (3.6). We then obtain a simpler equation for the projection of the 
momenta onto the x axis 

where 

9, = pk,ks 
E 

p2uv +x&x)$- 

(3.14) 

(3.15) 

which is more convenient for the subsequent analysis and solution. 
Hence, the final system of Navier-Stokes equations in the variables 5, q will consist of the six equations 

(1.5), (3.6), (3.10), (3.11) and (3.14) for determining the six functions: u,f, u;p, p, T (or II). 
The boundary conditions on the wall (2.1) in the new variables will be 

u({, 0) = 0, v<& 0) =fK 0) = O 
PP aH -- 
GA all @ 

= ECJ,T,~G, 0) or N&O) = T,(5) (3.16) 

The boundary conditions in the free stream (2.2) for solving the full system of NavierStokes equations 
(1.5), (3.6), (3.10), (3.11) and (3.14)will be 
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u(~,~$!k=V-cos” van,.+_% _ K.&a 
u* u* u* u* 

885 

f&-)=1* P(5.-)=L V,’ 
W: ’ 

H&c=)= H, =,h, +? (3.17) 

We shall write the boundary conditions on the shock wave (on the separating surfacey, = y&x)) (2.8), 
(2.9) and (2.11) for the solution of the simplified NavierStokes equations, taking account of (2.10)-(2.12) 
and (3.7), in the form 

k:_ 1 _R* T. r-l?;. 
Ps v,’ ps = -- VP, To 

where 
sA 

m4 = 
V,xH, TV 

u:A u* 1 XV(X) 
m5 

=-cm -, 
v,2xHFv ‘I v, 

17, = a J C’dy 
0 

(3.18) 

(3.19) 

The subscripts in (3.18) and (3.19) denotes that the corresponding expressions must be calculated at , 
Ys = YSW 

For the actual solution of the problems it is convenient to replace the second condition of (3.18) by 
an equivalent condition, which is imposed on the functionf(& rl). From the second equation of (3.6) 
written on the shoclk wave, we obtain 

(3.20) 

It can also be shown that relation (3.20) is a consequence of the law of conservation of the mass of 
the gas which flows across the closed contour ONQO, (Fig. l), written in 5, tl variables. 

The relation between the function A(x) and the physical standoff distance of the shock wave follows 
from the second equation of (3.2) written when y, = y&c) 

cos a 
Ys - = 

rw 
(3.21) 

Eliminating rS?‘+‘. from (3.2) and (3.21) we obtain, instead of (3.20) the condition for the reduced 
stream function on the shock wave 



886 G. A. Tirskii 

fq (5) = felt rls > = “& 
(v + l)u,A 

(3.22) 

which does not contain the physical standoff distance of the shock wave y, = y&r). This condition provides 
an explicit relation between the function A and the functionfon the shock wave. Formula (3.21) takes 
a quite simple form in the plane case (v = 0) 

(3.23) 

The friction coefficient (2.14), the heat transfer coefficient (2.15) and the drag coefficient (2.16) in 
the variables (3.1) will be 

1 &=I-_= aH(5.0) 
K,,,Ao H, -h, &J 

CD = CD, + c, 

where 

(3.24) 

(3.25) 

Here, k and p* are the coefficient viscosity and the dimensionless density taken in some cross-section 
r~ = IJ* of the shock layer and R. is a characteristic linear scale of the problem, such as the radius of 
curvature at the body vertex, for example. The overall drag CD is represented in the form of the sum 
of the inviscid and viscous drag coefficients. 

4. AN ESTIMATE OF THE ORDER OF THE COEFFICIENTS OF THE 
DIMENSIONLESS NAVIER-STOKES EQUATIONS 

In the case of supersonic and hypersonic flows around blunt bodies, the ratio of the densities up to 
and immediately after the leading shock wave and the Reynolds number are the main governing 
parameters. In the case of a perfect diatomic gas with constant heat capacities at high Mach and Reynolds 
numbers, the parameter k can be explicitly calculated, and its greatest value on the shock layer is equal 
to k = (y - l)l(y + 1). In this case, the parameter k becomes governing. In the case of a gas, when 
account is taken of the physicochemical processes of viscosity and thermal conductivity in the shock 
layer, its value changes from 0.05 to 0.2 while, at meteor velocities of the order of several tens of 
kilometres per second, k becomes even smaller [30]. In the case of the motion of bodies in the Earth’s 
atmosphere at Mach numbers M_, 3 6, this parameter defines the shock-layer thicknessy, - kRo [30] 
(also, see (3.23)) and will subsequently vary as the governing parameter from one to zero. The Reynolds 
number is also a governing parameter and characterizes the thickness of the boundary layer and of the 
shock wave structure and will vary from infinity to zero. 

We will now estimate the orders of magnitude of the coefficients in the Navier-Stokes equations (3.6), 
(3.10), (3.11) and (3.14) as a function of the parameter k and the number Re. 
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From expressions (3.13), for an arbitrary choice of the characteristic velocities UI and u+ and the scale 
function A(x), for fairly smooth bodies we have 

po-pi-p*-1, mi-m2-mj-ni-1 (4.1) 

We determine the order of the function A(x) in (3.1) from the condition that the variable rj both in the 
scale of the boundary-layer thickness as well as in the scale of the shock-layer thickness must be of the 
order of unity. The estimates 

y-kA, ys-kA (4.2) 

will then subsequently hold for all of the hydrodynamic models. 
So far, estimates (4.2) do not contain the final information on the order of magnitude of the thicknesses 

of the flow domains around the body, since the order of magnitude of the function A(x) has still not 
been determined. In fact, the order of A(x) will be determined starting out from the transverse scale 
of some flow domain which is being considered. The remaining coefficients in the Navier-Stokes 
equations (3.6), (3.10), (3.11) and (3.14) will be of a different order of magnitude in the case of the 
inviscid part of the shock layer and boundary layer since the parameters (functions) u.(n), u.(x) and 
A(x), which govern the characteristic velocities in these domains and their transverse dimensions, appear 
in these equations. 

We will first obtain the orders of magnitude of these coefficients in the case of a shock layer, starting 
out from the scales 

u* - VW, U,-Vi-kV, (4.3) 

which follow from boundary conditions (3.18) and (2.10). 
We select A(x) from the condition for normalizing the standoff distance wave in the variables (3.1) 

Y,(X) 
A(x)= ; pF”dy- & 

The order of A(x) in (4.4) is obtained taking account of the first equation of (3.6), the scale (4.3) for 
u* and relation (3.20), while noting that Q = 1 in this relation. Then, in the variables (3.1), when account 
is taken of (4.4), the physical domain of integration over the shock layer is transformed into the half- 
sttobya; s(x) d &, 0 < ?I < 1, that is, IJ - 1 from which, bearing in mind that Ht - T - 1 + k - 1, 

k, - k2 -k, - k4 -k, - k6 - k7 -k, k, - k2 (4.5) 

for the coefficients ki (i = 1, . . .8). 
From (3.13) and (4.3), we find the order of magnitude of the coefficients q (i = 1,. . .5) in the shock 

layer 

El - E2 -klRe, q -ll(kRe), cd -Q -l/Re (4.6) 

where 

Re ‘-‘*’ P-‘-R, 
CL CL(G) 

(4.7) 

Estimates for the dimensionless components of the viscous stress tensor zii (i, j = 5, 2, 6) and the 
fluxes X and Y (3.12)t will be 

(4.8) 

The order of the coefficients in (3.9), for the conditions on the shock wave (3.18), will be 
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rn4$ - mss - 1, &6s - Re;' (4.9) 

where 

(4.10) 

The boundary conditions on the wall (3.16) and in the free stream (3.17) do not change the estimates 
presented above. 

We will next consider all possible limiting cases when 0 < k < 1 over the whole range of Reynolds 
numbers from infinity to zero. 

5. THE BOUNDARY-LAYER EQUATIONS (Re + =, k - 1 
AND TERMS OF THE ORDER OF UNITY ARE RETAINED IN 

THE NAVIER-STOKES EQUATIONS) 

Suppose that Re, = p,V&/c~, + 00, where pS is the value of the viscosity immediately behind the 
shock wave. The parameter k - 1. Then, the estimate (U - 1,f - 1, U* - V_) 

Re* A2 = 
PC&A2 

ppXH,F 
-Kz-1 

where 

-_kRe, Re=k.!% 
l-v CL 

(5-l) 

(5.2) 

follows from the assumption that the viscous terms in Eq. (3.14) when Re, + 00 are only of the same 
order of magnitude as the inertial terms in a thin layer around the wall (the boundary layer) ys 4 Re 
(Prandtl’s principal hypothesis when deriving the boundary-layer equations). 

It follows from this that 

x _ K-x _ Re-x (5.3) 

Then, from (4.2), we obtain the well-known result for the boundary-layer thickness 

yIR,-yslR,-JklRe-Re-x (5.4) 

It follows from the second equation of (3.6), which is a consequence of the equation of continuity 
(l.l), that k2 - 1, from which we also obtain the well-known result for the order of magnitude of the 
normal component of the velocity 

V* lU* -v*lV, -v IV, -x-Rem% (5.5) 

Taking (5.3) and (5.4) into account, we conclude that the remaining coefficients in (3.13) will be of the 
following orders of magnitude (k - 1) 

k, - 1, k, - k4 - k, - k, - Rem%, k, - k, - Re-’ (5.6) 

El -s2 -Re-‘, Ed -I, E4 -ES -Re -K (5.7) 

By virtue of the fact that the operator D, which is applied to the required functions in (3.12), is of 
the order of unity, estimates (4.8) follow, which hold when Re + 00, in view of (4.1). From this, bearing 
(5.6) and (5.7) in mind, we find (see (3.15)) 

On letting Re tend to infinity and retaining only terms of the order of unity in Eqs (3.14), (3.10) and 
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(3.11) (first-order or classical boundary-layer theory), we obtain the boundary-layer equations 

+ O(Re-%) (5.10) 

It is necessary to ad’d system (3.6) here which, neglecting terms of the order of Re-’ in the second 
equation in which th’e leading terms are of the order of Re-‘“, will be 

(5.11) 

In system (5.8)-(5.3.1), the two functions {(x) and A(x) remain arbitrary, On multiplying equations (5.8) 
and (5.10) by&( 5’( ‘I) x x, an selecting the functions s(x) and A(x) from the conditions (c is a required constant) 

we find the Dorodnitsyn-Lees transform 

C(x) =;p*p_p*u*r,2vdr, q - p-“*r,v ? 
0 

-q$PdY= 2ji 

0 r, K”dP@ 

b=@, c=2 

where 

5 K _ lx&Jo u* K  x=m. **--=- 
P*P* v, *’ 8=t 

(5.12) 

(5.13) 

(5.14) 

The asterisk refers tal the conditions in any characteristic cross-section n = rb of the boundary layer 
and the functionsX =: XRs may be called the effective length of the plate, since the variable q in (5.12) 
becomes the self-similar Blasius variable ifXis replaced in it byx, that is, the distance from the leading 
edge of the plate. 

In the variables &II of (5.12) Eqs (5.8)-(5.11) take the well-known form 

(5.15) 

(5.16) 
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(5.17) 

The solution of these equations by the method of matched asymptotic expansions, retaining terms 
of the order of unity, must be coupled with the solution of Euler’s equations (the NavierStokes equations 
which are treated outside the boundary layer when Re + OQ, retaining terms O(1)) when y + 0. 
The equation for the momenta along the x axis in the case of an inviscid gas written on the body (when 
y + 0) gives 

(5.18) 

where u, = ule is the velocity of inviscid flow over the body. If we now take u* = u, as the characteristic 
velocity and use (5.18) in order to eliminate +/(a() from Eq. (5.16), it takes the final form which is 
customarily employed when solving boundary-layer problems 

(5.19) 

Conditions (3.16) remain as the boundary conditions on the body for system (5.15), (5.17), (5.19). 
On the boundary layer edge when q + 00, these conditions will be 

u(c,-) = 1, H&w) = If, = H, (5.20) 

Numerous approximate and efficient numerical methods of solution have been developed for this 
parabolic problem. After it has been solved, the friction coefficient and the heat transfer coefficient 
(3.24) will be calculated, taking account of (5.13) from the formulae 

(5.21) 

(5.22) 

6. THE VISCOUS SHOCK-LAYER EQUATIONS (Re + 00, k - 1 
AND TERMS O(1) AND O(Re-I’*) ARE RETAINED IN 

THE NAVIER-STOKES EQUATIONS) 

Letting the Reynolds number in the Navier-Stokes equations (3.6), (3.10), (3.11) and (3.14) tend to 
infinity, retaining terms of the order of Re-m in them and taking account of the fact here that, in the 
whole of the shock layer including the boundary layer, estimates (4.1) and (4.2) remain valid and that 
estimates (5.3X5.7) and (4.8) still hold in the boundary layer, we obtain the following systems of equations 

af - = u, a pW+ky)=- af pof +xE,‘(x)- at 

pp* +xy(x)uU- 
ag l&f + .W$($ +x,.)= 

V,’ =---p’(x) 
* 

~+$--&(~-k6u)j+---$--~+ 

+pk,k, p2uu + x~(x,u* - ag + O(Re-‘) 

(6-l) 

(6.2) 
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(6.3) 

(6.4) 

Note that the last term in square brackets on the right-hand side of (6.2) is of the order of 
Re-i according to estimates (5.6) and must be omitted. However, it remains available for future use 
in order to obtain VSL equations which are uniformly valid over the whole of the shock wave (see 
below). 

The boundary conditions on the wall for this system remain as previously (3.16). An important con- 
clusion follows from Eq. (6.3), that is, the pressure across the boundary layer in the second approximation 
can only change due to centrifugal forces. In order to determine this pressure, using an equation of 
the first order in the coordinate IJ (6.3), a single boundary condition on the boundary layer edge is 
required (the pressure on the wall is unknown). The solution of Euler’s equations on the wall cannot 
be taken as the outer boundary conditions for Eqs (6.1)-(6.4) since, in the second approximation, it 
(the outer solution) will be perturbed by the viscosity and thermal conductivity and, in particular, by 
the displacement thickness of the boundary layer and the effect of the vorticity of inviscid flow through 
coupling with the boundary-layer solution in the second approximation [6]. Hence, in order to obtain 
a closed problem in the second approximation of boundary-layer theory (as an alternative to the asymp- 
totic method of matched outer and inner expansions) we will try to obtain a composite system of 
equations which uniformly and simultaneously describes both the inviscid flow domain and the viscous 
flow domain over the. whole of the shock layer with boundary conditions on the dividing line y, = y,(x) 
with an accuracy up to terms of the order of Re-‘. For this purpose, it is necessary to estimate and keep 
the O(1) and 0(Re-lL2) terms in the outer inviscid domain of the shock layer when Re + 00 in the system 
of Navier-Stokes equations (3.6), (3.10), (3.11) and (3.14) and boundary conditions (3.18). In this case, 
unlike when estimating the boundary-layer terms, we shall start out from estimates (4.5), (4.6) and (4.8), 
which hold in the inviscid part of the shock layer. We then obtain 

@, - Re-I, Q2 - 1 (6.5) 

Hence, retaining the last term on the right-hand side of Eq. (6.2) is justified. When Re + m, we then 
obtain a system of Euler equations in the variables 5 and IJ from (3.9)-(3.11). Equations (6.1) must be 
added to this system. Consequently, taking account of terms of the order Re-ln does not add any 
additional terms to Eh,iler’s equations in the inviscid domain of the shock layer, unlike the system in 
the viscous domain (6.lH6.4) which, compared with the first approximation of boundary-layer equations, 
contains additional terms of the order of Re-” . Hence, the effect of viscosity and thermal conductivity 
on an inviscid flow in a shock layer is achieved through the condition for the matching solution of Euler’s 
equations when y 4 0 with the solution of the boundary-layer equations in the second approximation. 

In order to obtain al composite system of equations which describes the flow in the whole of the shock 
layer, taking account of second-order terms, it is now necessary to replace the simplified equation (6.3) 
in system (6.1)-(6.4) by the complete equation of motion of the inviscid fluid, that is 

P 2uv - 1 u2 + x&x)u !fK - 
k4 

ag $-=--$$+O(Re-I) 
5 

which, on the right-hand side, contains terms of the order of unity in the inviscid domain which become 
terms of the order of Re-’ and Re- i/2 (the second term on the right) in the viscous domain. So, the 
system of VSL equations (6.1), (6.2), (6.6) and (6.4) will be the composite system of equations which 
takes account of all second-order effects. Note that, in the VSL system, the direct influence of viscosity 
in the equation for the momenta along the normal (6.6) is a third-order effect in Ri’ although the 
second-order effects associated with curvature occur directly in the coefficients of the equation. In 
the equation for the .e axis projection of the momenta (6.2), the effect of viscosity already manifests 
itself in the first and second order. Nevertheless, the VSL equations are uniformly useful up to terms 
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O(Re-‘“) inclusive over the whole of the shock layer. This is an extremely important and fundamental 
simplification of the Navier-Stokes equations which leads to the VSL equations if it is remembered 
that the Navier-Stokes equations themselves are only asymptotically true when account is taken of terms 
of the order of those terms that were left in the system of equations (6.1), (6.2), (6.4) and (6.6). 

We will now give an asymptotic simplification of the boundary conditions in the shock wave in the 
case of the VSL equations. Bearing in mind that, in the second order, viscosity manifests itself over the 
whole of the shock layer, it is necessary to use estimate (5.3) for A. Then, for the coefficients (3.10) in 
conditions (3.18), we obtain the estimates 

m4 pppv '" K-K, m4E6= jt -z-=-w 
Re* A2 LV,A KA 

- Re-’ 
~0. V,xH, 

(6.7) 
__3-- 
Re* A2 

= 2 5 - KmZi, m5E6 = ,_f:, - Re-’ 

On retaining terms O(1) and 0(Re-“2) in relations (3.18) and taking account of (6.7), we obtain the 
so-called generalized Rankine-Hugoniot conditions 

U(~,rj$) = *- 7” cos3 &Cl- tg2 p,> au 
u* Kxsin $ F s 1 

K _ P=-=‘-R, -- 
PP 

These conditions do not take account of the fact that the derivative (&)/(ZQ) becomes large on 
approaching the shock wave. Retaining this derivative in relations (3.18), we obtain conditions on the 
required shock wave which are more complex than (6.8) 

TV ~0s~ p,(i - tg2 p,$) au a * PV ~08~ p, tg p, au --- 
Kz sin p aT7 u* Kxsinp q 

Pel,)=L 
u* 2~” ~0s~ f3,tgp,v au 

rk 
+(1-k)sin’P-7 

KE 
-+ 

co atl 

If the parameter k is not assumed to be small, the additional (third) terms in conditions (6.9) are of 
the same order K-in as the “viscous” terms in (6.8). The second condition of (3.18) is replaced by the 
equivalent condition (3.20) or (3.22). The standoff distance of the shock wave will then be found from 
(3.20) or (3.21). 
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We shall write the VSL equations in the boundary-layer variables (5.12); the contribution to them 
from effects of the second approximation, compared with boundary-layer equations (5.15), (5.17) and 
(5.19) written in the same variables, will then be clearly seen. 

Omitting the calculations, which are similar to those presented in Section 5, we find 

where 

af u=-, lJ.2 

h 
= Sik,*,_ 

XH, ag T 

25$- 
af aH 

( 1 
- - f-2Sag a a_rl =QW, 

c = pk,k* x5’(x) x 2(ayv* dlnv, 
-=----- 

25 dlnu* 

25 wo2 HI at U* ’ 
p2s’__‘2 

E,‘(x) dlnx dine 

u:A 
d=--= 

H,F”V,2R 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

UdJ *Ml’(x) wJ* 
e=- 

xH,P’V,z25 = H,p”v,2~~’ 

The conditions on the shock wave will be (6.8) or (6.9) and (3.20), where A is given by the formula 
presented above. After finding Q, the standoff distance ys = 
using (3.20) if we put rts = 1 in (3.21). 

y,(x) is subsequently found from (3.21) 

After solving the VSL equations, the friction coefficient (2.14) and heat transfer coefficient (2.15) 
will be given by the expressions 
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(6.15) 

which agree with formulae (5.21). The overall drag coefficient will be calculated using formula (3%). 
The VSL equations with generalized conditions on the required shock wave describe the flow over 

the whole of the shock layer both at high and moderate Reynolds numbers. 
The advantage of writing the VSL equations in Dorodnitsyn-Lees variables (6.10H6.13) is the fact 

that the influence of second-order effects can be clearly seen from them. In the momenta equation 
(6.11) the&e effects are associated with terms containing the coefficients kg, Q and c. Since kh = a - 

= p_u&jp), these coefficients are small at high supersonic velocities up to Reynolds 
?? - 1. The coefficient c - pZ* and the last term in (6.11) can be omitted in the case of 

high supersonic velocities. The coefficient 3 in (6.11) and (6.13) differs from the Rubezin coefficient 
1= pp(l.r,+) in the boundary-layer equations by the factor ZYiF&, which leads to a weaker dependence 
of the coefficient 2 on n. 

If terms in Eq. (6.11) with the coefficients k6, a and c are omitted, system (6.10)-(6.13) will be only 
slightly different from the boundary-layer equations. The difference between the problem of the flow 
around a body, which is solved using a viscous shock layer, and the boundary-layer problem lies in the 
solution of a similar system of equations but with the determination of the pressure distribution in the 
shock layer from the additional equations (6.10) and (6.12), which enable one to determine the pressure 
field over the whole of the shock layer, unlike in the case of boundary-layer theory where the pressure 
is predetermined from the solution of the problem of the flow of a non-viscous gas around a body. 

7. THE EQUATIONS OF A HYPERSONIC (THIN) 
VISCOUS SHOCK LAYER (TVSL) 

This system of equations is obtained from the VSL equations (Section 6) when k + 0 and 
Re + 00 subject to the condition that k Re = K - 1 [27]. On taking the above-mentioned limit in Eqs 
(6.10)-(6.13), we obtain 

af u=--, v* 
atl 

&!&_ u* 
x a6 P$Z ( 1 f +&g 

p,# +2@- f +25-- af au 
( 1 

v*25 ap a r& -=---+- 
at a6 a71 ~4 a6 all ( 1 h 

(7-l) 

The boundary conditions on the body for this system will be (3.16). The boundary conditions‘in the 
shock wave (6.8) take the simpler form 

u(S9q.y) = 1 -(&$Js. PC&rls)=sin2P 

m&%) = K --&[;~++-;)g-(~)] 

ii= g, ui=u*=v,cosp r Kit 

(7.2) 

Here, in the conditions for u and H, the angle S is not replaced by a, breaking the sequence of the 
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asymptotic approach. Henceforth, we may always put /3 = a. The unknown “standoff distance” of the 
shock wave IJ, will be found from condition (3.20) which, in the approximation being considered, will 
be 

f(L%) = rw Kb J- PJLP 
(v+1)R,cosp = = (v+l)fi (7.3) 

In model (7.1~(7.3), the effects of the second approximation of boundary-layer theory associated 
with the longitudinal and transverse curvature drop out. However, the vortex-interaction effects remain 
[27] since the solution is constructed at once over the whole domain from the body to the shock 
wave. 

The velocity v2, the coordinate y = ~(5, IJ) and the standoff distance y, = y&) can be determined 
after problem (7.1)-(‘7.3) has been solved. Problem (7.1)-(7.3) is solved by a marching method, beginning 
from the stagnation hine 5 = 0. Many specific problems both for a perfect gas as well as when allowance 
is made for the real physicochemical processes occurring in the shock layer have been solved within 
the framework of this model [5]. The advantages and disadvantages of this model have been discussed 
in [5, 151. 

8. THE PARABOLIZED NAVIER-STOKES EQUATIONS 

In the case of moderate and low Reynolds numbers, rather than using a two-layer scheme (a shock 
layer plus the structure of the shock wave) in the numerical computation of supersonic flow around a 
body, it is more convenient to obtain the solution at once over the whole of the perturbed flow domain 
without separating the shock wave. In such a direct calculation the Navier-Stokes structure is obtained 
when solving the problem [22]. Such a direct solution can be obtained numerically at comparatively 
low Reynolds numbers when the shock-wave thickness, which is proportional to Re-‘, becomes 
comparable with the whole of the perturbed flow domain and there is no need for any additional 
subdivision of the meish in the shock wave structure. In this case, the four conditions in the free stream 
(3.17) and the three conditions on the wall (3.16) are sufficient to solve the problem of supersonic flow 
around a body using the NavierStokes equations. The VSL equations (see Section 6) are one order 
lower with respect to the coordinate q in Rq. (3.1) which are of the order of O(Re-l). Here, the second 
derivative of u with respect to q are omitted since, on passing through the shock wave, the derivative 
&&r~ does not undergo a sharp change, although the terms with the second derivatives are formally 
of the same order as the terms with the derivatives #u/&12. Then, instead of (3.10), we obtain the 
simplified equation for the y-axis projection of the momenta. 

On changing in this equation to the variables (5.12), we obtain 

where 

(8.1) 

(8.2) 

kds =Rv,=-Rtgcr, kss= uy,A Asinacosa 
2X4 2x 2XH,?‘v,2 = - 2XH,? 
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Here, we have put: U* and ‘ul_ = V, cos CL, II* = u2.. = -V, sin cr. Equations (6.10), (6.11) and (6.13) 
will be the remaining equations of the parabolized system of NavierStokes equations. This system, 
like the VSL equation, retains elliptic properties in subsonic flow domains [22]. 

9. A VANISHINGLY THIN VISCOUS SHOCK LAYER (Re + 0, k + 0, 
SUBJECT TO THE CONDITION THAT (k/Re)“’ + 0) 

Unlike all the preceding models in which Re + OO, we shall assume in this model that Re + 0 and 
that the shock-layer thickness is vanishingly small (k -+ 0). 

From the very outset of the arousal of interest in the problem of the hypersonic flow of a rarefied 
gas around bodies (in the 1950s) the idea that the continuum (hydrodynamic) approach was invalid in 
the aerodynamics of transitional and free molecular flow conditions around a body, that is, when the 
Knudsen number Kn is of the order of unity and greater, became the widely held and prevalent point 
of view among specialists in gas dynamics and molecular dynamics. This was due to at least two 
circumstances. 

Firstly, the asymptotic derivation of the equations of hydrodynamics from the kinetic Boltzmann 
equation using the Chapman-Enskog method indicated that the Navier-Stokes equations hold up to 
terms O(Kn) inclusive. However, it should be noted that taking account of the terms O(Kn) in the 
NavierStokes equations is not of an asymptotic character but of a composite character. The fact that 
they agree closely with the results based on the linear irreversible thermodynamics, their applicability 
in efficient direct calculations of the whole of the flow field with a shock wave and the frequently 
unexpected wider range of applicability with respect to Kn numbers than would follow from their 
asymptotic derivation, is the justification for such an “inconsistent” derivation. The description of rarefied 
gas flows using continuum models is preferable since such models require much less computational 
resources than models based on a molecular approach. Furthermore, when account is taken of 
physicochemical processes in the shock layer, the continuum approach does not require any knowledge 
of the rate constants for the elementary acts of interaction between the particles and, in the continuum 
approach, a knowledge of the averaged macroscopic rate constants is sufficient. 

Secondly, the NavierStokes structure of the shock wave at high Mach numbers differs from the 
structure obtained from the solution of kinetic equations and from experiment. 

Repeated attempts have therefore been made to take account of higher terms in the 
Chapman-Enskog expansion of the distribution function with respect to Kn numbers, which leads to 
continuum models in the form of the Burnett equations and super-Burnett equations, which contain 
higher derivatives of the hydrodynamic variables. Thus when solving the boundary-value problems with 
these equations there is a difficulty of formulating the additional boundary conditions (which do not 
arise from the mechanical formulation of the problem) as well as the occurrence of instability in the 
numerical solutions when the mesh step size is subdivided. Furthermore, numerical solution of the 
problem of the flow around a plate with a sharp leading edge has shown [32] that the Burnett equations 
provide a less accurate description of the flow field than the NavierStokes equations. This enables 
one to hope that the Burnett equations can only improve the solution when the Navier-Stokes equations 
are of high accuracy [18]. Hence, at the present time, there are no continuum models capable of 
describing flows with high Knudsen numbers in problems of hypersonic flow around bodies. 

However, what has been said above refers to the description of flow domains with Kn numbers of 
the order of unity or greater. Here, the possibility of using continuum approaches to the description 
of flow domains, which are vanishingly small in size with small Kn numbers, where the continuum 
approach remains valid, has not been ruled out. Such flows must be characterized by low Re numbers. 
We will therefore next make an attempt in this paper to consider the problem of hypersonic flow around 
bodies when Re + 0 and k + 0 (VTVSL) within the framework of the Navier-Stokes equations. The 
condition 

has to be imposed in order to obtain physically correct results. 
In particular, since flows with large coefficients of viscosity 1 correspond to low Re numbers, this 

means that the terms containing the viscosity in the Navier-Stokes equations (3.6), (3.9)-(3.11) are the 
principal ones. We therefore estimate all the terms in the Navier-Stokes equations with respect to the 
first term containing the viscosity in Eq. (3.9) taking Re*A2 - 1, whence i - (K)-i%~ir-ti(Z = x/&). 
Using estimate (4.2), which holds everywhere, we find y - &(k /Re)vz. From the necessary condition 
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(9.1), we then obtain Ht, f - 1. Henceforth, we shall therefore use the estimate 

&K-X (9.2) 

It is interesting to note that, in appearance, (9.2) is similar to estimate (5.3) obtained for a boundary 
layer. However, these estimates are basically different from one another. Whereas in (5.3), K = 
k Re + 00, in (9.2) K + 0. From the condition on the separating line (3.20) or from the second equation 
of (3.6) we obtain 

f.+-‘-Kx, u -1 (9.3) 

that is, the tangential component of the velocity in a VTVSL tends to zero when Re + 0 and k + 0 as 
K”. This means that the momentum along the x axis does not change in a shock layer of vanishing 
thickness. Next, on taking account of the fact that we have Vi - k on the separating line y, = y,(x) (see 
(2.9) and (2.10)) and taking u* = I_+ - k(u* - V_) as the characteristic velocity, we obtain the following 
estimates for the coefficients ki (i = 1, . . . 8) and Ei (i = 1, . . . 5) 

k, - k, - k4 - k, - k, k, - kKK (9.4) 

k, -k6 -kK+ -(k/R+, k, -k(k/Re)x 

EI - E2 -klRe, Ed - KbYZ, E., -Ed - Re-’ w 

The components ‘cti (i, j = E,, rh<) and the fluxes X, X’, Y from (3.12) will be of the following orders 

r55 - %l - ‘55r - 251 - T& - ‘Et;ll - J13 (9.6) 

Using condition (9.1) and estimates (9.2)-(9.6), the system of Navier-Stokes equations (3.6) 
(3.9)-(3.11) takes the simplest possible form 

af u=--, af 
ti 

pv, =-g f +2(- ( 1 36 

d Id” ( 1 =o, 

a-r,ti ** l=Z 
aP -0 -- 

h 

(9.7) 

(9.8) 

VW 

(9.10) 

The boundary conditions on the wall remain in the previous form (3.16). The boundary conditions 
on the separating line y, = 
take the form 

y,(x) (3.18), (3.29) are also very much simplified (u* = Ui = V_cosa) and 

ps = sin2 p 

=H ODV L= rw 
(v+l)Acosp 

(9.11) 

The second equation of (9.7) is self-contained and, after solving problem (9.7)-(9.10), (3.16), (9.11), 
the velocity uz - (k/Re)” is determined from it. 

For convenience in obtaining the solution, we normalize the shock-layer thickness by putting 

);(x) 
A= I PdY 

0 
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Then, 0 d q s 1. The solution of the problem is written out in the quadratures 

A2 = Qo 
(V+l)K,Isinl3cosP s 

U = K,E@, (TQsinp, p = sin’ p 

H-h, _ h-h,,, -_- 
H, H, 

= K.ZD2(rl)sinp, @2ol)=? y 
0 

The pressure coefficient, the friction coefficient and the heat transfer coefficient will be 

CP = 2sin’ p. Cr =2sinl3cos/3, 
sin p 

C, = l_h lH 
W m 

(9.12) 

(9.13) 

Under the assumption that I = 1, we obtain 

The coefficients (9.13) agree exactly with the corresponding coefficients in the case of free molecular 
flow around a body with accommodation coefficients equal to unity. The expression for C, is Newton’s 
law, which does not follow from Euler’s equations when k + 0. It is well known that, when k + 0, the 
Busemann formula, which takes account of the effect of centrifugal forces in the shock layer, is obtained 
instead of it. It follows from what has been described above that, when viscosity is taken into account, 
these forces are proportional to K/k - - Re and tend to zero as Re + 0. Hence, Newton’s law of resistance 
follows from the Navier-Stokes equations when k + 0, Re + 0 subject to the condition that (k/Ete)” 
-_) 0 or, in other words, from VTVSL theory. 

It follows from the solution (9.12) that, when condition (9.1) is satisfied, subject to which it was 
obtained, we have a vanishingly thin viscous shock layer (VTVSL) (when h,,,/&, # 0), the thickness of 
which tends to zero as 

YS (9.14) 

If the Kn number is defined as the ratio of the mean free path to the shock-layer thickness y, we 
obtain Kn = ZRt, - Kv2 -_) 0. Consequently, in the solution obtained, the gas motion after shock wave 
passes occurs in an extremely thin shock layer (ys + 0), in which thex axis projection of the momentum 
of the free stream and the enthalpy do not change over the thickness of the shock layer and are 
transferred with the shock wave onto the body as a whole (see (9.8), (9.10), (9.11)). 

Graphs of C,=, in the neighbourhood of the critical point, obtained by the numerical solution of 
the VTVSL, VSL and NavierStokes (NS) equations, are shown in Fig. 2 as a function of Re = 
(pJJo)/l.@‘s). In the VTVSL equations, condition (9.1) is satisfied and C, + 1 when Re + 0. In the 
VSL equations, condition (9.1) is not satisfied, starting from a certain small Re number (when Re = 
10 in the given case) and C, - Remv2 + 00, which confirms the above theory. 

It should be noted that the fact that the flow reaches free molecular behaviour has been noted 
previously [27,33], starting out from a particular exact solution of the thin viscous shock layer (TVSL) 
equations, which hold in the neighbourhood of the critical point of an axially symmetric body when the 
viscosity depends linearly on the temperature. The results obtained here are of a general nature, they 
do not depend on the actual transport properties of the gas and they hold for both axially symmetric 
and plane two-dimensional problems. It has been shown that, when k + 0, Re + 0, subject to the 
condition that (kiRe)” + 0, the problem of hypersonic flow around a body reduces to the solution of 
the simpl%ed (“local”) Stokes equations (9.7X9.10) in a vanishingly thin viscous layer with the required 
boundary (condition (9.12)). 

Hence, the problem of supersonic and hypersonic flow around a blunt body along the whole of a 
trajectory for entry into the Earth’s atmosphere (or into the atmosphere of a planet), from free molecular 
flow conditions to continuum flow conditions, corresponding to high Re numbers close to the surface 
of a planet, can be solved using a VSL model (Section 6), by means of a single numerical algorithm 
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Fig. 2. 

such as those in [ll] or [12]. In this case, at low Re numbers, it is necessary to observe the not very 
burdensome condition (9.1) artificially. Actually, since, at high altitudes, the entry velocities of space 
vehicles and cosmic bodies are high (of the order of 10 km/s), we have k - 0.05. It is therefore necessary 
to use condition (9.1) at extremely low Re numbers which, for bodies with R0 - 1 m, corresponds to 
altitudes H - 100-1.50 km above the Earth’s surface. At low Re numbers, the structure of the shock 
wave (the second layer in the two-layer model) must be found separately from the solution of the kinetic 
equations or from the corresponding macroscopic equations. 
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